首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6937篇
  免费   676篇
  国内免费   366篇
电工技术   203篇
综合类   321篇
化学工业   1368篇
金属工艺   455篇
机械仪表   1178篇
建筑科学   39篇
矿业工程   127篇
能源动力   269篇
轻工业   61篇
水利工程   5篇
石油天然气   37篇
武器工业   770篇
无线电   1300篇
一般工业技术   715篇
冶金工业   72篇
原子能技术   22篇
自动化技术   1037篇
  2024年   14篇
  2023年   155篇
  2022年   242篇
  2021年   279篇
  2020年   256篇
  2019年   205篇
  2018年   146篇
  2017年   164篇
  2016年   152篇
  2015年   170篇
  2014年   457篇
  2013年   682篇
  2012年   1081篇
  2011年   1174篇
  2010年   814篇
  2009年   745篇
  2008年   255篇
  2007年   466篇
  2006年   295篇
  2005年   89篇
  2004年   17篇
  2003年   13篇
  2002年   27篇
  2001年   19篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   5篇
  1996年   13篇
  1982年   1篇
  1951年   1篇
排序方式: 共有7979条查询结果,搜索用时 15 毫秒
1.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
2.
In this work, the SnS2 nanoflowers (SnS2 NFs) were solvothermally prepared in the solvent of ethanol, while SnS2 nanoplates (SnS2 NPs) were obtained through the identical conditions except for the solvent of water. The flowers were assembled with numerous nanosheets with very thin thickness, and the NPs exhibited hexagonal shape. When used as the battery-type electrode material for supercapacitors, the SnS2 NFs delivered a specific capacity of as high as 264.4 C g?1 at 1 A g?1, which was higher than the 201.6 C g?1 of SnS2 NPs. Furthermore, a hybrid supercapacitor (HSC) was assembled with the SnS2 as positive electrode and activated carbon (AC) as negative electrode, respectively. The SnS2 NFs//AC HSC exhibited a high energy density of 28.1 Wh kg?1 at 904.3 W kg?1, which was higher than the 24.2 Wh kg?1 at 844.3 W kg?1 of SnS2 NPs//AC HSC. Especially, when the power density was enhanced to the highest value of 8666.8 W kg?1, the NFs-based device could still hold 20.4 Wh kg?1. In addition, both HSC devices showed an excellent cycling stability after 5000 cycles at 5 A g?1. The present method is simple and can be extended to the preparation of other transition metal sulfides (TMSs)-based electrode materials with brilliant electrochemical performance for supercapacitors.  相似文献   
3.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
4.
《Ceramics International》2022,48(10):13524-13530
Thin film sensors are employed to monitor the health of hot-section components of aeroengine intelligence (for instance, blades), and electrical insulating layers are needed between the metal components and thin film sensors. For this purpose, the electrical insulation characteristics of an yttria-stabilized zirconia (YSZ)/Al2O3 multilayer insulating structure were investigated. First, YSZ thin films were deposited by DC reactive sputtering at various substrate temperatures, and the microstructural features were investigated by scanning electron microscopy and X-ray diffraction. The results indicate that the micromorphology of the YSZ thin film gradually became denser with increasing substrate temperature, and no new phases appeared. The compact and uniform topography of the YSZ thin film improved the insulation properties of the multilayer insulating structure and enhanced the adhesion of the thin film sensors. In addition, the electrical insulation properties of the YSZ/Al2O3 multilayer insulating structure were evaluated via insulation resistance tests from 25 to 800 °C, in which the YSZ thin film was deposited at 550 °C. The results show that the insulation resistance of the multilayer structure increased by an order of magnitude compared with that of the conventional Al2O3 insulating layer, reaching 135 kΩ (5.1 × 10?6 S/m) at 800 °C. Notably, the insulation resistance was still greater than 75 kΩ after annealing at 800 °C for 5 h. Finally, the shunt effect of the YSZ/Al2O3 multilayer insulating structure was estimated using a PdCr thin film strain gauge. The relative resistance error was 0.24%, which demonstrates that the YSZ/Al2O3 multilayer insulating structure is suitable for thin film sensors.  相似文献   
5.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   
6.
In the task of skeleton-based action recognition, CNN-based methods represent the skeleton data as a pseudo image for processing. However, it still remains as a critical issue of how to construct the pseudo image to model the spatial dependencies of the skeletal data. To address this issue, we propose a novel convolutional neural network with adaptive inferential framework (AIF-CNN) to exploit the dependencies among the skeleton joints. We particularly investigate several initialization strategies to make the AIF effective with each strategy introducing the different prior knowledge. Extensive experiments on the dataset of NTU RGB+D and Kinetics-Skeleton demonstrate that the performance is improved significantly by integrating the different prior information. The source code is available at: https://github.com/hhe-distance/AIF-CNN.  相似文献   
7.
复杂机械结构优化设计一般表现为多目标、多约束、多参数的优化问题,所以复杂结构优化设计过程通常存在计算复杂、不易收敛等困难。分层优化技术是复杂结构优化设计的一种有效途径,通过将优化问题中复杂的约束、设计变量以及功能目标合理分解为若干子层问题进行求解,然后通过协调得到复杂机械结构整体优化问题的结果。文章对机械结构分层优化技术的理论、应用研究现状进行了总结并探讨了其关键技术环节及发展趋势。  相似文献   
8.
Fast curing epoxy resins were prepared by the reactions of diglycidyl ether of bisphenol A with isophorone diamine (IPD) and N-(3-aminopropyl)-imidazole (API), and their curing kinetics and mechanical properties influenced by IPD content were also investigated. The analysis of curing kinetics was based on the nonisothermal differential scanning calorimetry (DSC) data with the typical Kissinger, Ozawa, and Flynn–Wall–Ozawa models, respectively. The glass-transition temperature was also measured by the same technique. Additionally, the mechanical properties including flexural, impact, and tensile performances were tested, and the curing time was estimated by isothermal DSC. The degree of cure (α) dependency of activation energy (Ea ) revealed the complexity of curing reaction. Detailed analysis of the curing kinetics at the molecular level indicated that the dependence of Ea on the α was a combined effect of addition reaction, autocatalytic reaction, viscosity, and steric hindrance. From the nonisothermal curves, the curing reaction mechanism could be proposed according to the increasingly obvious low temperature peaks generated by the addition reaction of epoxy group with the primary amines in API and IPD molecules. Using the preferred resin formulation, the resin system could be cured within 10 min at 120 °C with a relatively good mechanical performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47950.  相似文献   
9.
Urea electrolysis is a promising technology for hydrogen production, which can alleviate environmental pollution of urea-rich wastewater. It's worth noting that electrochemistry activity can be significantly improved by reasonably regulating the electron configuration around the active site for the doped materials. In this work, a series of well-tuned Ni doped CoWO4 nanoarrays on Ni foam supports have been prepared through a typical hydrothermal approach for the first time. Moreover, the resulting Ni–CoWO4-2 material significantly promotes urea oxidation performance with an applied potential of 1.35 V at 50 mA cm?2, which is lower than that of water oxidation reaction (1.60 V). Density functional theory results suggest that the Ni doped CoWO4 has larger urea adsorption energy compared with CoWO4 and the CO(NH2)2 molecule is strongly adsorbed on surface of Ni doped CoWO4, which is beneficial to accelerate the kinetics of the reaction and improve the electrocatalytic activity of the urea electrolysis.  相似文献   
10.
针对平面并联机构无奇异位置工作空间求解困难、过程繁琐、计算量大等问题,提出了基于CAD求解平面并联机构工作空间的三维螺旋扫描方法。将[n]自由度平面并联机构分解成[n]条支链进行独立分析,得到每条支链下末端执行器的可达区域,再将所有支链可达区域取交集即为平面并联机构工作空间。应用SolidWorks软件建立平面并联机构模型,进行几何特征处理,通过自动求解器求解,将求解过程图形化,快速得到同轴布局5R机构和平面3-RPR并联机构的无奇异位置工作空间。通过同轴布局5R机构的运动学实验,验证了该求解方法的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号